
Contextual-CNN: A Novel Architecture Capturing
Unified Meaning for Sentence Classification

Joongbo Shin, Yanghoon Kim, Seunghyun Yoon and Kyomin Jung
Dept. of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

{jbshin, ad26kr, mysmilesh, kjung}@snu.ac.kr

Abstract—In this paper, we focus on the architecture of the
convolutional neural network (CNN) for sentence classification.
For understanding natural language, context in the sentence is
important information for grasping the word sense. However,
traditional CNN’s feed-forward architecture is insufficient to
reflect this factor. To solve this limitation, we propose a contextual
CNN (C-CNN) for better text understanding by adding recurrent
connection to the convolutional layer. This architecture helps C-
CNN units to be modulated over time with their neighboring
units, thus the model integrates word meanings with surrounding
information within the same layer. We evaluate our model on
sentence-level sentiment prediction tasks and question catego-
rization task. The C-CNN achieves state-of-the-art performances
on fine-grained sentiment prediction and question categorization.

Index Terms—deep learning, convolutional neural network,
natural language processing, sentence classification

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved great

successes in computer vision, and this prosperity has been

extended to natural language processing (NLP) in recent years.

Without using well-studied classical hand-crafted features in

natural language domain, CNN based models have shown the

state-of-the-art performances on sentence classification tasks

[1]–[4]. These achievements are mainly due to the CNN’s

power of extracting local features from the data by using

convolution layers and accumulating global information by

building hierarchical structures.

Contextual information in a sentence is significant to dis-

ambiguate the meaning of words. For instance, the following

two sentences “I slept deeply at night.” and “I slept deeply

halfway through this movie.” have the same phrase “slept

deeply” which should be recognized differently in terms of

sentimental meaning. While CNN’s hierarchical layers can

deal with low-to-high level information, it has limitations

in capturing contextual meaning of words within the whole

sentence because its architecture relies on the feed-forward

hierarchical path, particularly in the inference stage.

K. Jung is with the Department of Electrical and Computer Engineer-
ing, ASRI, Seoul National University, Seoul, Korea. This work was sup-
ported by Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education(NRF-
2016M3C4A7952587), the Ministry of Trade, Industry & Energy(MOTIE,
Korea) under Industrial Technology Innovation Program(No.10073144), and
the Brain Korea 21 Plus Project.

�
�����

�����	

�

��
��
�

����������
����
���

Fig. 1. Illustration of an C-CNN architecture for assigning the sentence to
the one of two labels. The color is assigned to the units corresponding to the
filter, and bold boxes in features are pooled units. If one omitting the dashed
arrows for recurrent connection, this figure shows one layer CNN model for
sentence classification.

For better understanding sentences, we propose a novel

CNN-based scheme that properly integrates feature extraction

and context modulation. An example of the proposed model,

contextual CNN (C-CNN for convenience) is illustrated in

Fig. 1. The key module of our model consists of original con-

volution and additional recurrence function. This architecture

allows C-CNN units to be updated according to their neigh-

boring units, hence the model secure the ability of context

modulation within the same layer. At the first layer of C-CNN,

right after the sentence matrix, feature maps will represent a

set of new word vectors updated by original words, taking

more peripheral contexts into account over time. Moreover,

non-linear interactions of words within a local context can

be obtained by recurring of the convolution with non-linear

activation function. It is worth noting that the model’s revising

process at word level is also available in the inference stage,

which is important to understand the text as human do.

We evaluate the proposed model on sentence-level text

classification tasks, including standard sentiment prediction

benchmark Stanford Sentiment Treebank and question catego-

491

2018 IEEE International Conference on Big Data and Smart Computing

2375-9356/18/$31.00 ©2018 IEEE
DOI 10.1109/BigComp.2018.00079

rization dataset TREC. The C-CNN achieves state-of-the-art

accuracy 52.3% on the fine-grained sentiment prediction task

(5-class) and 95.2% on the TREC question categorization task

(6-class). To verify the C-CNN’s performance over our CNN

baselines, we conduct additional experiments on the sentiment

prediction dataset. Experimental results demonstrate that the

proposed model has an advanced architecture for NLP tasks.

II. RELATED WORKS

A. CNN-based models for text understanding

Many prior CNN-based works have been proposed for the

sentence-level text classification tasks, and they have achieved

excellent performances without hand-crafted features. Propa-

gating extracted features from convolution layer to the logistic

regression layer needs an encoding process which converts

a sentence of arbitrary length to a fixed sized vector. A

common approach for this process is max-pooling over all

features (1-max pooling for convenience) detected by a sliding

convolution filters on a given sentence [1], [2]. However,

stacking convolution layers, which is essential to represent a

hierarchical structure of a sentence, cannot be obtained with

1-max pooling strategy.

To overcome this limitation, k-max pooling is proposed,

which selects k most active features with preserved order. To

make parameter k sensitive to the length of the sentence and

the depth of the network, a dynamic k-max pooling is proposed

in [3]. These pooling strategies allow CNN architecture to

have multiple convolution layers for extracting high-level ab-

stract features. In order to get higher classification accuracies,

extensive experiments with different model architectures are

conducted in [4]. They adopt hybrid word embedding layer

by utilizing pretrained word embeddings like GloVe [5] to

resolve out-of-vocabulary problem. They also apply different-

sized filters for better phrase detection, and some tricks for

pretraining the networks.

In [6], CNN architecture is revised to get non-linear inter-

actions between words and non-sequential convolution. They

try to capture the non-consecutive n-grams, and achieve good

performance in several text classification tasks.

Those CNN-based models have tried to better represent a

sentence, however, none of them applies context modulation

within a sentence while reading the text.

B. Recurrent and Convolutional Neural Networks

Our study of recurrent connections in convolutional layer

is inspired by a recently proposed model which shows better

performance in image understanding [7]. However, we applied

recurrent connections between convolution layers for capturing

expanded contextual meaning of the text, thus building a novel

architecture for sentence classification task.

It is worthwhile to mention that there is another work for

capturing contextual meaning of words by using recurrent and

convolutional neural networks for text classification [8]. They

used two kinds of neural networks separately, however, we

combined both recurrence and convolution into one layer that

is recurrently applying convolution operation.

III. MODEL

A. CNN for Sentence Classification

In this section, we explain the elements of CNN for sentence

classification as preliminaries for our study. Fig. 1 without

dashed arrows shows an example of one layer CNN architec-

ture.

Let X ∈ R
n×d be the input sentence matrix, which is

concatenation of n word vectors of dimension d (e.g., n = 6
and d = 4 in Fig. 1). In representing sentence using CNN,

there is a common problem that input sequence length is

various while the network generally needs fixed size output.

Here we use the most standard remedy of fixing the input

sequence to the length n0: Any word exceeding length n0 is

ignored, and sentences shorter than the length are filled with

all-zero vectors as well as out-of-vocabulary words.

A convolutional layer (CL) computes 1-D convolution over

the sentence matrix with its k filters (or kernels) denoted by

the matrix Wc
j ∈ R

m×d, which is a jth filter with region size

m (e.g., k = 4 and m = 3 in Fig. 1). An output of the layer

located at ith index on the jth feature map is given by

zi,j = f(Wc
j ·X[i] + bcj), (1)

where X[i] ∈ R
m×d is a sub-matrix of the sentence matrix

centered at ith position, bj is the bias term, and f is the non-

linear activation function such as rectified linear unit (ReLU).

In this temporal convolution, we use stride 1 as other CNN

based sentence classifiers do and pad zero vectors to the input,

so the output of the convolution is Z ∈ R
n×k.

To build up the layers for the hierarchical modeling, 1-

D max pooling operation is applied to each feature map

corresponding to particular filter with the s × 1 pooling

size, hence the resulting output will be Z′ ∈ R
n
s×k (this

operation is not represented in Fig. 1). Stacking L CLs with

1-D max pooling allows the CNN to capture more abstract

meaning of the sentence. For the last convoluional layer right

before the logistic regression, we apply 1-max pooling over

each feature map, then we get a vector representing sentence

[y1, . . . , yk] = y ∈ R
k, where yj = max(z:,j) [1] (in

Fig. 1, bold boxes represent maximum value in each feature

map). After the 1-max pooling, we get the fixed size vector

representation of the input sentence.

The sentence representation is forwarded to logistic regres-

sion layer for assigning it to one of C categories (e.g., C = 2
in Fig. 1) with weight Wh ∈ R

k×C and bias bh. Following

standard practices, our model is trained by minimizing the

cross-entropy loss of predictions on a given training data.

B. C-CNN for Sentence Classification

The key module of C-CNN is the contextual convolutional

layer (C-CL) having recurrent structure. The module repeat-

edly computes convolution over the sentence matrix thereby

its output updates itself over time. An output unit located at

ith index of the jth feature map at time step t of the layer is

given by:

zi,j(t) = f(xi,j +Wc
j · Z[i](t− 1) + bcj), (2)

492

�
�����

�����	

�

��
��
�

Fig. 2. The module of C-CNN is unfolded for T = 2 time steps.

where Z[i](t − 1) ∈ R
m×d is a sub-matrix of the recurrent

input, which is the previous output of the same layer, and the

other variables and parameters are just the same as those in

the previous section. The output of C-CL will be forwarded

to the next layer after the finite iteration step T , and the other

modules like pooling and logistic regression form the overall

architecture together.

This lateral connection facilitates context modulation within

the same layer, which is key idea of this work. Equation (2)

and Fig. 2 represent the dynamic behavior of the proposed

module. One of interesting points is that a state of the C-CL

evolves over time while the input sentence matrix is static.

The C-CL reinterprets meaning of the words from their sur-

roundings, which cannot be obtained from the original CNN.

The context region for updating current position depends on

filter size m and predefined iteration step T : (m − 1)T + 1.

After passing through the non-linear activation function and

summing with the input, the C-CL attains non-linear relation

of the words thus enriching meaning of the words.

We now describe the additional components of the tradi-

tional CL in our C-CNN maintaining the other elements in the

previous section. Fig. 1 with recurrence shows an example of

one layer C-CNN architecture.

By excluding the first term in (2), context modulation also

can be formed

zi,j(t) = f(Wc
j · Z[i](t− 1) + bcj).

We named this module as recurrent convolutional layer (R-

CL), and the network composed of R-CLs as recurrent CNN

(R-CNN). This is equivalent to (1) for t = 1 when Z is

initialized as input matrix. Also, R-CNN with T iteration steps

can be shown as T layers CNN without 1-D max pooling layer

having shared filter weights across the layers.

For all kinds of convolutional layer, after computing the

convolution, the local response normalization tailored for our

task is used in all implementations in order to prevent the

states from exploding:

g(zi,j(t)) =
zi,j(t)(

K + α
min(k,j+(N−1)/2)∑

j′=max(0,j−(N−1)/2)

zi,j′(t)2
)β

,

where the sum runs over N adjacent feature maps, and the

constants K, α, and β are hyper-parameters of controlling the

amplitude of normalization.

IV. EXPERIMENT

A. Datasets

We evaluate the proposed model on Sentiment Stan-

ford Treebank benchmark (SST)1. SST-5 consists of movie

review with find-grained labels (very positive, positive,

neutral, negative, very negative). Following the previous

works, we use standard 8544/1101/2210 split for train-

ing/development/testing, and also use the phrase-level labeled

dataset for training. SST-2 is the binary version (positive,

negative) of this benchmark obtained by ignoring neutral

label and merging each polarity, and the resulting split is

6920/872/1821. Development data is used for hyper-parameter

tuning, and also used in early stopping for preventing from

over-fitting.

We also test our model on TREC question classification

dataset (TREC)2, which has a question set belonging to six

major categories (abbreviation, entity, description, human, lo-

cation, numeric). TREC consists of 5452/500 dataset for train-

ing/testing. To generate development dataset, we randomly

sampled 452 from the training set.

For all datasets, we use lower-cased words with splitting by

space and use accuracy as the metric.

B. Implementation Details

1) Overall architecture: {E,Wc
1:L,b

c
1:L,W

h,bh} are the

weight parameters that can be trained, where E ∈ R
V×d is

lookup table for word vector representation with vocabulary

size V and embedding dimension d, and Wc
1:L indicates all

weights for L convolutional layers. For word representation,

we use the publicly available 300-dimensional GloVe trained

on the Common Crawl with 42B tokens [5], hence our embed-

ding dimension d = 300. Word embedding is normalized to

unit norm and is fixed in the experiments without fine-tuning.

For sentence matrix, s0 is chosen as maximum length of the

sentence in each dataset.

To verify the ability of proposed model, we limit the search

on hyper-parameter space as the iteration number T ∈ {1, 2}
and the number of the layers L ∈ {1, 2, 3}. Also, the same

iteration is given to each layers, and every layer having the

same k filters. For fair comparison, we set all our implemen-

tations having same number of weight parameters. With the

condition d = k and T = 1, R-CNN is identical to CNN,

hence we set the number of feature maps k = 300. The rest

hyper-parameters of model are set as m = 3, s = 3, K = 1,

α = 0.001, β = 0.75, and N = 41.

2) Training the model: In our implementation, the models

are trained using Adam [9] updates rule in combination with

the BPTT algorithm with gradient clipping over shuffled

mini-batch for minimizing the cross-entropy loss. The initial

1http://nlp.stanford.edu/sentiment/
2http://cogcomp.cs.illinois.edu/Data/QA/QC

493

TABLE I
COMPARISON BETWEEN C-CNN AND OUR BASELINES ON SST. ‘ITER’

INDICATES THE ITERATION STEPS AND R-CNN-ITER1 REPRESENTS OUR

IMPLEMENTATION OF CNN.

Model SST-5 SST-2
R-CNN-iter1 layer1/2/3 47.8 50.9 50.6 86.9 87.9 88.2
R-CNN-iter2 layer1/2/3 49.7 51.0 51.1 88.5 88.6 88.0
C-CNN-iter1 layer1/2/3 48.2 51.5 52.3 87.1 88.2 89.2
C-CNN-iter2 layer1/2/3 49.9 52.1 52.1 88.4 88.9 88.8

learning rate is set to 0.001 with the decay factor of 0.1 which

will be applied every 5 epochs. We use Xavier initializer [10]

for model initialization. During training, dropout is used after

each convolutional layer with probability 0.25. We also use l2
regularization with weight 1e− 5 for all datasets.

C. Results

1) Comparison with Baseline Models: We analyze the

proposed models by comparing C-CNN with our baselines

R-CNN and CNN on SST benchmark. For fair comparison,

we set our implementations to have the same number of

weight parameters. Varying the iteration steps and the number

of layers, the test accuracies of each implementation of the

models are shown in Tab. I. R-CNN with 1 iteration is identical

to CNN in our setting, and we do not report the results for

T ≥ 3 because there is no advantage in accuracy.

When comparing line 1 with line 2 in Tab. I, we can verify

the advantage of the recurrent connection in the convolutional

layer as most results of R-CNN are better than those of

CNN. Mostly, C-CNN is better than R-CNN ({line 3 and

4} vs line 2 in Tab. I), demonstrating that the combination

of the static input and the dynamic output helps the model

overcome the over-fitting problem. Line 2 and 4 show that

sentence-level understanding may be hampered by stacking

more than 2 layers at 2 iteration steps, and possible solution

is to use different iteration in each C-CL. These results support

that C-CNN has a better architecture over CNN for sentence

classification.

2) Comparison with State-of-the-art Models: We compare

our C-CNN with other models on sentence-level text classifi-

cation tasks. Each block shows non-CNN models, CNN-based

models, and our models from top to bottom, respectively.

Our C-CNN achieves better performances than state-of-

the-art models on SST-5 and TREC, and shows competitive

accuracy on SST-2. Tab. II shows that C-CNN outperforms

all other CNN based models except for MVCNN on SST-2,

which is slightly better than ours. MVCNN utilize extensive

sources such as four different-sized filters, five pretrained word

embeddings as well as pretraining the network to get the

highest score.

To our knowledge, there have been limited trials on clas-

sifying TREC dataset with neural networks. This is due to

the small size of the dataset, and it makes us hard to escape

over-fitting problem. C-CNN shows slightly better result than

the state-of-the-art method SVM [11], and significantly out-

performs other CNN based models.

TABLE II
COMPARISON BETWEEN C-CNN WITH THE STATE-OF-THE-ART MODELS.
THE FIRST BLOCK LISTS NON-CNN MODELS, AND THE SECOND BLOCK IS

FOR CNN-BASED MODELS. THE LAST BLOCK IS OUR MODEL.

Model SST-5 SST-2 TREC
SVM [11] - - 95.0
PVec [12] 48.7 87.8 -

RNTN [13] 45.7 85.4 -
T-LSTM [14] 51.0 88.0 -

DMN [15] 52.1 88.6 -
CNN [2] 48.0 87.2 93.6

DCNN [3] 48.5 86.8 93.0
MVCNN [4] 49.6 89.4 -
T-CNN [6] 51.2 88.6 -

C-CNN-iter1 layer1 48.2 87.1 90.8
C-CNN-iter1 layer2 51.5 88.2 94.4
C-CNN-iter1 layer3 52.3 89.2 95.2

V. CONCLUSION

We proposed a novel CNN architecture for sentence classifi-

cation. By combining recurrent connections with convolutional

layer, our network effectively integrated feature extraction and

context modulation within the same layer. Experimental results

demonstrated that the proposed model has an better CNN

architecture for NLP tasks.

REFERENCES

[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[2] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[3] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neu-
ral network for modelling sentences,” arXiv preprint arXiv:1404.2188,
2014.

[4] W. Yin and H. Schütze, “Multichannel variable-size convolution for
sentence classification,” arXiv preprint arXiv:1603.04513, 2016.

[5] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.”

[6] T. Lei, R. Barzilay, and T. Jaakkola, “Molding cnns for text: non-linear,
non-consecutive convolutions,” arXiv preprint arXiv:1508.04112, 2015.

[7] M. Liang and X. Hu, “Recurrent convolutional neural network for object
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3367–3375.

[8] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” in AAAI, 2015, pp. 2267–2273.

[9] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[10] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.” in Aistats, vol. 9, 2010, pp. 249–256.

[11] J. Silva, L. Coheur, A. C. Mendes, and A. Wichert, “From symbolic
to sub-symbolic information in question classification,” Artificial Intel-
ligence Review, vol. 35, no. 2, pp. 137–154, 2011.

[12] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference on
Machine Learning (ICML-14), 2014, pp. 1188–1196.

[13] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality over
a sentiment treebank,” in Proceedings of the conference on empirical
methods in natural language processing (EMNLP), vol. 1631. Citeseer,
2013, p. 1642.

[14] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[15] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in International
Conference on Machine Learning, 2016, pp. 1378–1387.

494

