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Abstract—Recognizing and classifying paralinguistic signals,
with its various applications, is an important problem. In general,
this task is considered challenging because the sound information
from the signals is difficult to distinguish even by humans.
Thus, analyzing signals with machine learning techniques is a
reasonable approach to understanding signals. Audio features
extracted from paralinguistic signals usually consist of high-
dimensional vectors such as prosody, energy, cepstrum, and other
speech-related information. Therefore, when the size of a training
corpus is not sufficiently large, it is extremely difficult to apply
machine learning methods to analyze these signals due to their
high feature dimensions. This paper addresses these limitations
by using neural networks’ feature learning abilities. First, we use
a neural network-based autoencoder to compress the signal to
eliminate redundancy within the signal feature, and we show that
the compressed signal features are competitive in distinguishing
the signal compared to the original features. Second, we show by
experiment that the neural network-based classification model
almost always outperforms nonneural methods such as logistic
regression, support vector machines, decision trees, and boosted
trees.

Index Terms—computational paralinguistics, neural networks

I. INTRODUCTION

Neural network-based models have achieved state-of-the-
art performances in diverse applications, such as computer
vision, neural machine translation, recommendation systems,
and other task-oriented areas [1], [2]. Along with such
impressive advancements, statistical speech processing has
also demonstrated many advantages when adopting a neural
network-based architecture. For instance, Amodei et al. [3]
demonstrated that a convolutional architecture with a recurrent
architecture can achieve great performance in speech recog-
nition due to its abilities to learn more salient features in the
time domain and temporal dependencies within the utterance.
Synthesizing speech with a neural network architecture has
also been successful [4] by utilizing the neural network’s
feature learning ability to incorporate each text-to-speech
module to reduce extensive domain expertise and complexity.

In addition, diverse areas exist in the area of paralinguistic
signals, such as analyzing the tone/pitch of the voice, nuance,
and speech with upper respiratory symptoms [5]. Including
these, all paralinguistic studies are receiving growing attention
providing considerable assistance in medical science, psychol-
ogy, and general engineering fields.

However, one of the biggest difficulties in analyzing paralin-
guistic signals lies in its ambiguity that is indistinguishable

even by humans. Thus, researchers have adopted various
aspects of a signal, such as prosody, energy, and cepstrum,
to analyze the signal. In addition, only a small number of
paralinguistic signals in a dataset is usually acquired in real
situations for training the model, implying that the model is not
able to sufficiently learn the feature representations. To address
this issue, Sahu et al., [6] used adversarial autoencoders
for dimension reduction and showed that compressed signal
representations do not significantly harm overall emotion
recognition performance by comparing classification accuracy
in original/compressed feature settings.

In this paper, we suggest using various machine learning
techniques, such as autoencoders (AE), principal component
analysis (PCA), and linear discriminant analysis (LDA), for
feature dimension reduction on two different feature sets
extending the research in [6]. With the compressed fea-
tures, we adopt machine learning models such as multilayer
perceptron (MLP), support vector machine (SVM), logistic
regression (LR), decision tree (DT), and boosted tree (XGB)
for classifying the paralinguistic signals.

Experimental results show that most of the models trained
with the compressed features provide competitive classifica-
tion accuracy compared to that of the models trained with orig-
inal features. In particular, the accuracy with AE-compressed
features reached the highest, even overwhelming the original
features in some cases. We strongly believe that our approach
lessens the insufficient training corpus problem by reducing
the redundancy in the high-dimensional features. For the
classifier model, the MLP almost always outperforms other
models in classifying the signal in the compressed/original
feature setup. Hence, we suggest utilizing MLP based on AE-
compressed features for efficient signal classification.

II. RELATED WORK

One of the most prominent problems in paralinguistic
signal processing studies is speech emotion recognition, as
it is a crucial factor in optimal human-computer interaction,
including dialog systems. The challenge that speech emo-
tion recognition poses is predicting the emotion behind the
speech and classifying it into one of the following categories:
happy, sad, neutral, and angry. To achieve this goal, classic
machine learning algorithms, such as the hidden Markov
model (HMM) and support vector machines (SVM) have
been adopted [7], [8]. Later, several studies started utilizing
deep learning architectures for speech emotion recognition. A
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feedforward neural network has been used to extract window-
level features, summarize them into a single utterance-level
feature with some statistical functions, and generate an output
prediction with an extreme learning machine (ELM) [9].
Since the deep neural network with ELM model estimates the
probability for each frame of small window length, Lee et al.
[10] suggested a deep bidirectional long short-term memory
(LSTM) architecture on a low-level acoustic feature set to
incorporate long contextual effect and to avoid the vanishing
gradient problem. As an effort to consider regionally salient
information within a signal, Aldeneh et al. . [11] extracted 40-
dimensional log Mel filterbank features (MFBs) from the raw
signal and applied convolution layers, max-pooling layers, and
dense layers followed by a softmax layer to categorize each
utterance into emotion labels.

III. TASK DESCRIPTION

This paper concentrates on two paralinguistic tasks that
involve classification problems using a small amount of data
(i.e., 502, 3342 training instances) with high-dimensional
features. Our objective in each task is to build a model
that achieves the best classification accuracy. To evaluate the
performance of the model, we use weight accuracy recall
(WAR), the ratio of correct predictions to the whole test
samples, which is widely used in this study.

The heartbeat classification task: This task focuses on
distinguishing anomalies of heartbeat sounds. The given types
of heartbeat sounds are: “normal”, “mild”, and “moder-
ate”/“severe” (heart disease). ). For this task, the Heart Sounds
Shenzhen (HSS) corpus is gathered from 170 subjects (115
male/55 female, ages ranging from 21 to 88). The data set
includes 502, 180 and 163 utterances for training, validation,
and testing, respectively.

The atypical affect classification task: An emotion of
disabled speakers is recognized. The emotion classes are
defined as “angry”, “happy”, “sad” and “neutral”. To gather
the Emotional Sensitivity Assistance System for People with
Disabilities (EmotAsS) dataset, 15 mentally, neurologically,
or physically disabled individuals (7 male / 8 female, ages
ranging from 20 to 58) were recorded spontaneously in a
familiar room in their workplace. Under the supervision of a
psychologist, five different tasks were performed to generate
emotional utterances: describing images, talking about specific
topics, telling a story of a pictured book, introducing their
everyday business, and playing together games. The corpus
contains 3342 and 4186 utterances for training and testing,
respectively [12], [13].

IV. PROPOSED FRAMEWORK

A. Feature sets

To explore feature reduction effects on various feature
settings, we use the Interspeech 2018 ComParE [14] and
emobase features extracted using the openSMILE toolkit [15]
on all task corpora. These features include signal processed
features such as mel-frequency cepstral coefficients (MFCC),

F0, and log mel frequency. In addition, they contain statistical
functional features within certain time frames. The dimensions
of the features within each utterance is fixed to 6,373 and 1,582
in ComParE and emobase, respectively.

B. Compression methods

In this study, various machine learning techniques are
suggested for feature dimension reduction to investigate its
efficacy on two different feature sets. These techniques include
not only classical approaches such as PCA and LDA but also
recent neural network-based AEs.

Principal component analysis (PCA): PCA is an unsuper-
vised learning technique that aims to identify the principal
components that maximize the variance of transformed data
points. Compressed test features are obtained by transforming
original test features with pretrained PCA parameters. We use
PCA for compressing features into 2- and 200-dimensional
spaces (PCA-2 and PCA-200, respectively).

Linear discriminant analysis (LDA): Unlike PCA, the
LDA uses the label information of the training set so that it
minimizes the distance between the same labels and separates
data points belonging to different labels as much as possible.
To perform this, we find a linear transformation that maximizes
the ratio of “between class scatter” and “within class scatter”.
Unlike PCA and AE, we set the dimension of the latent code
vector as N − 1, where N is the number of classes in the
training corpus.

Autoencoder (AE): This is basically a neural network
encoding the original feature vector into a latent vector of
small dimensions and decoding the latent vector into the
reconstruction vector of the original dimension. We use the
mean square error (MSE) between the original feature vector
and the reconstruction vector as a loss function, which aims
to efficiently contain information on the original features
in the latent vector. For the implementation, we use three
dense layers with a Selu activation function [16] and batch
normalization to stabilize the training procedure. To avoid
overfitting, we adopt early stop criteria when the validation
MSE loss starts to increase. With the trained model, we
extract latent vectors by encoding the original features of
the training and testing dataset. In all tasks, ComParE and
emobase features of the training set are encoded into 400-
and 200-dimensional Euclidean space, respectively.

C. Classification methods

Four classical classifiers and neural network-based models
are used for our tasks.

Logistic regression (LR): As a basic classification model, it
uses a logistic function with trainable parameters to assign a
probability for each label given each feature. The parameters
are updated through gradient descent.

Support vector Machine (SVM): The goal of the support
vector machine is to find a decision boundary that maximizes
the classification margin between the data points in different



TABLE I
MODEL PERFORMANCE COMPARISONS FOR THE HEARTBEAT TASK. TOP-2

PERFORMANCES ARE MARKED AS BOLD.

Feature Compression LR SVM DT XGB MLP

ComParE

- 50.92 42.33 41.10 53.99 55.83
AE 50.92 54.60 41.72 53.37 55.83

PCA-2 30.06 37.68 33.74 49.08 54.60
PCA-200 38.65 49.08 38.65 53.37 53.99

LDA 49.69 50.31 52.15 52.76 51.53

Emobase

- 50.92 53.37 39.26 57.06 55.83
AE 57.67 37.42 38.65 57.67 57.06

PCA-2 55.83 55.21 40.49 49.08 55.21
PCA-200 44.79 57.06 45.40 53.37 57.67

LDA 42.94 44.17 41.72 41.10 44.79

classes given all the label information. Based on these pre-
trained parameters for the decision boundary, new instances
are predicted to belong to the label of the highest probability.
We implemented linear SVM in our experiments.
Decision tree (DT) : A decision tree comprises three types
of nodes: the root node, internal nodes, and terminal nodes.
The root node and the internal nodes contain features that
determine the path of the training example. The construction
of the tree structure starts with the root node, and the iterative
dichotomiser 3 (ID3) algorithm selects the feature of each
node. The algorithm chooses the attribute with the maximum
information gain within each iteration.

Gradient Boosting tree (XGB): The boosting tree is es-
sentially a weighted ensemble of weaker decision trees that
optimizes a multiclass objective function [17]. We achieve
this by recurrently adding a new decision tree function at every
round. To make the model properly learn the structures of trees
and the data, the loss function in each iteration is defined as the
error between the model’s prediction at each round and true
value. The regularization term of each additive tree is added
to alleviate overfitting on the training set and to promote a
better generalization of the whole model.

Multi-layer perceptron (MLP): Multilayer perceptron is part
of an artificial neural network, which comprises input nodes,
hidden nodes, and output nodes. In our experiments, two hid-
den layers followed by a softmax layer with the Selu activation
function [16] were used for nonlinear transformation. We also
applied batch normalization and dropout with probability 0.2.
All backpropagated parameters were updated to minimize the
loss function at each epoch.

V. PERFORMANCE EVALUATION

Heartbeat classification task: Table I demonstrates the
results of the heartbeat classification task. Overall, the best
performance 57.67% was obtained using MLP with PCA-
200 com-pressed emobase features and LR/XGB with AE-
compressed emobase features. In general, the MLP classifier
outperformed the other four classification models in both the
original/compressed feature setups. Additionally, DT is worse

TABLE II
MODEL PERFORMANCE COMPARISONS FOR THE ATYPICAL TASK. TOP-2

PERFORMANCES ARE MARKED AS BOLD.

Feature Compression LR SVM DT XGB MLP

ComParE

- 67.13 43.38 51.12 66.67 67.80
AE 67.82 59.99 50.38 66.15 67.87

PCA-2 33.85 22.62 49.93 66.20 67.56
PCA-200 38.13 45.99 49.57 67.30 67.80

LDA 42.33 45.48 45.39 38.70 39.94

Emobase

- 64.14 66.60 51.82 66.29 66.67
AE 64.19 64.02 49.73 66.32 64.43

PCA-2 68.01 36.19 49.07 67.49 67.96
PCA-200 65.50 36.62 52.20 67.56 65.86

LDA 55.02 55.02 48.78 50.00 54.95

than XGB in most cases, as it is a simplified version of XGB.
For the experiments with MLP, we stopped training when the
validation loss started increasing to avoid overfitting.

Atypical affect classification task: As shown in Table II,
using LR and MLP with PCA-2 emobase features achieved
68.01% and 67.96%, respectively. However, when considering
all five training models, we observed that the AE-compressed
features result in the highest average accuracy. Furthermore,
the MLP classifier performed better than other models in
most feature/compression settings. For the implementation,
we divided the training corpus into an 8:2 ratio for the
training/validation set.

VI. DISCUSSION

A. Compression ability of AE

In two tasks, it was clearly observed that the combina-
tion of AE compression and the MLP classifier had very
competitive performance in all tasks, even better than that
of using the original emobase feature set. This shows the
efficacy of the approach to training small amounts of data
and high dimensions. To interpret these phenomena, we first
compressed the ComParE features of the heartbeat training
set into the 200-dimensional Euclidean space by PCA and
selected 2 dominant principal components of each data for
visualization, which were plotted in Fig 1. With these trained
parameters of PCA, we compressed the ComParE features
in a testing set into 2-dimensional space. For visualization
of AE compression, we selected two components of the first
and second largest absolute values among each 400-dimension
train/test compressed vector because their activations are the
most influential for the classification process.

As shown in the Fig 2, the AE-compressed data points
belonging to the same classes in the train/test set are compara-
tively well clustered together, whereas data in different classes
are separated. Furthermore, they are aligned linearly with an
almost identical gradient, which makes the distribution of the
test set features close to the training set’s feature distribution.
However, the distinction of PCA-compressed data points in
different classes is apparently harder than the AE compression



Fig. 1. Visualization of PCA compression.

Fig. 2. Visualization of AE compression.

case. We consider all these factors to make AE better than the
PCA compression method.

B. Classification with MLP

As described above, our experimental results reveal that
MLP almost always outperforms other classifiers both in
original and compressed feature settings, overcoming data
insufficiency. This demonstrates that neural network architec-
ture can still learn better representations with the compressed
feature. In addition, we expect to see continual improvements
with neural architecture variants in future works in general
paralinguistic signal classification tasks.

VII. CONCLUSION

In this paper, we propose the implementation of compres-
sion frameworks for paralinguistic signal classification tasks.
We extract two sets of features (ComParE, emobase2010) for
training our models and explore how they vary in the aspect of
classification accuracy among the heartbeat and atypical affect
classification tasks. We train our models with our original
features and the features autonomously compressed by PCA,
LDA, and AE.

From the experiments, we observe that AE compression
features and the MLP classifier are two key factors for achiev-
ing superior classification accuracy. Furthermore, they show
even better performances than that of the combination with
non-compressed features, which contain more information on
the signal. These results demonstrate that the AE-compressed
features can practically alternate original features that suffer
from high dimensions when the size of the training corpus is
limited.

Finally, we show by comparison that the MLP generally
achieves a better ability to learn feature representations than
classical models in two paralinguistic tasks.
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