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Abstract

In this study, we propose a novel graph neu-
ral network, called propagate-selector (PS),
which propagates information over sentences
to understand information that cannot be in-
ferred when considering sentences in isolation.
First, we design a graph structure in which
each node represents the individual sentences,
and some pairs of nodes are selectively con-
nected based on the text structure. Then, we
develop an iterative attentive aggregation, and
a skip-combine method in which a node in-
teracts with its neighborhood nodes to accu-
mulate the necessary information. To evaluate
the performance of the proposed approaches,
we conducted experiments with the HotpotQA
dataset. The empirical results demonstrate the
superiority of our proposed approach, which
obtains the best performances compared to the
widely used answer-selection models that do
not consider the inter-sentential relationship.

1 Introduction

Understanding texts and being able to answer a
question posed by a human is a long-standing
goal in the artificial intelligence field. Given the
rapid advancement of neural network-based mod-
els and the availability of large-scale datasets,
such as SQuAD (Rajpurkar et al., 2016) and Triv-
iaQA (Joshi et al., 2017), researchers have be-
gun to concentrate on building automatic question-
answering (QA) systems. One example of such
a system is called the machine-reading question-
answering (MRQA) model, which provides an-
swers to questions from given passages (Xiong
et al., 2016; Wang et al., 2017; Shen et al., 2017b).

Recently, research has revealed that most of the
questions in the existing MRQA datasets do not re-
quire reasoning across sentences in the given con-
text (passage); instead, they can be answered by
looking at only a single sentence (Weissenborn

Passage 1, 2015 Diamond Head Classic:
① The 2015 Diamond Head Classic was a mid-season eight-team
college basketball tournament… ② It was the seventh annual Diamond
Head Classic tournament … ③ No. 3-ranked Oklahoma defeated
Harvard to win the tournament championship... ④ Buddy Hield was
named the tournament's MVP.

Passage N, Buddy Hield:
① Chavano Rainier “Buddy” Hield is a Bahamian professional
basketball player for the Sacramento Kings of the NBA... ② …

Question: Which team does the player named 2015 Diamond Head
Classic’s MVP play for?

Supporting Sentences: 1-④, N-①

…

example

Figure 1: An example of dataset. Detecting supporting
sentences is an essential step being able to answer the
question.

et al., 2017). Using this characteristic, a simple
model can achieve performances competitive with
that of a sophisticated model. However, in most of
the real scenarios of QA applications, more than
one sentences should be utilized to extract a cor-
rect answer.

To alleviate this limitation in the previous
datasets, another type of dataset was developed
in which answering the question requires rea-
soning over multiple sentences in the given pas-
sages (Yang et al., 2018; Welbl et al., 2018). Fig-
ure 1 shows an example of a recently released
dataset, the HotpotQA. This dataset consists of
not only question-answer pairs with context pas-
sages but also supporting sentence information for
answering the question annotated by a human.

In this study, we are interested in building
a model that exploits the relational information
among sentences in passages and in classifying
the supporting sentences that contain the essen-
tial information for answering the question. To
this end, we propose a novel graph neural network
model, named Propagate-selector (PS), that can
be directly employed as a subsystem in the QA
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pipeline. First, we design a graph structure to hold
information in the HotpotQA dataset by assign-
ing each sentence to an independent graph node.
Then, we connect the undirected edges between
nodes using a proposed graph topology (see the
discussion in 4.1). Next, we allow PS to propagate
information between the nodes through iterative
hops to perform reasoning across the given sen-
tences. Trough the propagate process, the model
learns to understand information that cannot be in-
ferred when considering sentences in isolation.

To the best of our knowledge, this is the first
work to employ a graph neural network struc-
ture to find supporting sentences for a QA sys-
tem. Through experiments, we demonstrate that
the proposed method achieves better performances
when classifying supporting sentences than those
of the widely used answer-selection models (Wang
and Jiang, 2016; Bian et al., 2017; Shen et al.,
2017a; Tran et al., 2018).

2 Related Work

Previous researchers have also investigated neu-
ral network-based models for MRQA. One line of
inquiry employs an attention mechanism between
tokens in the question and passage to compute the
answer span from the given text (Seo et al., 2016;
Wang et al., 2017). As the task scope was extended
from specific- to open-domain QA, several models
have been proposed to select a relevant paragraph
from the text to predict the answer span (Wang
et al., 2018; Clark and Gardner, 2018). However,
none of these methods have addressed reasoning
over multiple sentences.

To understand the relational patterns in the
dataset, graph neural network algorithms have
also been previously proposed. Kipf and Welling
(2016) proposed a graph convolutional network
to classify graph-structured data. This model
was further investigated for applications involv-
ing large-scale graphs (Hamilton et al., 2017), for
the effectiveness of aggregating and combining
graph nodes by employing an attention mecha-
nism (Veličković et al., 2018), and for adopting
recurrent node updates (Palm et al., 2018). In addi-
tion, one trial involved applying graph neural net-
works to QA tasks; however, this usage was lim-
ited to the entity level rather than sentence level
understanding (De Cao et al., 2018).

topology
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𝑠𝑠1 𝑠𝑠3

q

Passage 1

Passage N

Figure 2: Topology of the proposed model. Each node
represents a sentence from the passage and the ques-
tion.

3 Task and Dataset

The specific problem we aim to tackle in this study
is to classify supporting sentences in the MRQA
task. We consider the target dataset HotpotQA,
by Yang et al. (2018), which is comprised of tuples
(<Q, Pn, Yi, A>) where Q is the question, Pn is
the set of passages as the given context, and each
passage P ∈Pn is further comprised of a set of
sentences Si (Si ∈Pn). Here, Yi is a binary label
indicating whether Si contains the information re-
quired to answer the question, and A is the answer.
In particular, we call a sentence, Ss ∈Si, a sup-
porting sentence when Ys is true. Figure 1 shows
an example of the HotpotQA dataset.

In this study, we do not use the answer informa-
tion from the dataset; we use only the subsequent
tuples <Q, Pn, Yi> when classifying supporting
sentences. We believe that this subproblem plays
an important role in building a full QA pipeline
because the proposed models for this task will be
combined with other MRQA models in an end-to-
end training process.

4 Methodology

4.1 Propagate-Selector

In this paper, we are interested in identifying sup-
porting sentences, among sentences in the given
text that contain information essential to answer-
ing the question. To build a model that can perform
reasoning across multiple sentences, we propose
a graph neural network model called Propagate-
selector (PS). PS consists of the following parts:

Topology: To build a model that understands
the relationship between sentences for answering
a question, we propose a graph neural network
where each node represents a sentence from pas-



sages and the question. Figure 2 depicts the topol-
ogy of the proposed model. In an offline step, we
organize the content of each instance in a graph
where each node represents a sentence from the
passages and the question. Then, we add edges be-
tween nodes using the following topology:

• we fully connect nodes that represent sen-
tences from the same passage (dotted-black);

• we fully connect nodes that represent the first
sentence of each passage (dotted-red);

• we add an edge between the question and ev-
ery node for each passage (dotted-blue).

In this way, we enable a path by which sentence
nodes can propagate information between both in-
ner and outer passages.
Node representation: Question Q∈Rd×Q and
sentence Si ∈Rd×Si , (where d is the dimension-
ality of the word embedding and Q and Si rep-
resent the lengths of the sequences in Q and
Si, respectively), are processed to acquire the
sentence-level information. Recent studies have
shown that a pretrained language model helps
the model capture the contextual meaning of
words in the sentence (Peters et al., 2018; De-
vlin et al., 2019). Following this study, we select
an ELMo (Peters et al., 2018) language model
for the word-embedding layer of our model as
follows: LQ=ELMo(Q), LS =ELMo(S). Using
these new representations, we compute the sen-
tence representation as follows:

hQt = fθ(hQt−1,L
Q
t ),

hSt = fθ(hSt−1,L
S
t ),

NQ = hQlast, NS = hSlast,

(1)

where fθ is the RNN function with the weight pa-
rameters θ, and NQ ∈Rd′ and NS ∈Rd′ are node
representations for the question and sentence, re-
spectively (where d′ is the dimensionality of the
RNN hidden units).
Aggregation: An iterative attentive aggregation
function to the neighbor nodes is utilized to com-
pute the amount of information to be propagated
to each node in the graph as follows:

A(k)
v = σ(

∑
u∈N(v) a

(k)
vu W(k) · N(k)

u ),

a(k)vu = exp(Svu)/
∑

kexp(Svk),

S(k)
vu = (N(k)

v )ᵀ ·W(k) · N(k)
u ,

(2)

where Av ∈Rd
′

is the aggregated information for
the v-th node computed by attentive weighted
summation of its neighbor nodes, avu is atten-
tion weight between node v and its neighbor nodes
u (u∈N(v)), Nu ∈Rd

′
is the u-th node represen-

tation, σ is a nonlinear activation function, and
W∈Rd′×d′ is the learned model parameter. Be-
cause all the nodes belong to a graph structure
in which the iterative aggregation is performed
among nodes, the k in the equation indicates that
the computation occurs in the k-th hop (iteration).
Update: The aggregated information for the v-
th node, Av in equation (2), is combined with its
previous node representation to update the node.
We apply a skip connection to allow the model to
learn the amount of information to be updated in
each hop as follows:

N(k)
v = σ(W · {N(k−1)

v ;A(k)
v }), (3)

where σ is a nonlinear activation function, {;} in-
dicates vector concatenation, and W∈Rd′×2d′ is
the learned model parameter.

4.2 Optimization
Because our objective is to classify supporting
sentences (Si ∈Pn) from the given tuples<Q, Pn,
Yi>, we define two types of loss to be minimized.
One is a rank loss that computes the cross-entropy
loss between a question and each sentence using
the ground-truth Yi as follows:

lossrank = −log ∑N
i=1Yi log(Si),

S = [score1, ..., scorei],

scorei = gθ(NQ,NS
i ),

(4)

where gθ is a feedforward network that computes a
similarity score between the final representation of
the question and each sentence. The other is atten-
tion loss, which is defined in each hop as follows:

lossattn = −log ∑k
i=1

∑N
i=1Yi log(a(k)qi ), (5)

where a
(k)
qi indicates the relevance between the

question node q and the i-th sentence node in the
k-th hop as computed by equation (2).

Finally, these two losses are combined to con-
struct the final objective function:

L = α lossrank + lossattn, (6)

where α is a hyperparameter.



properties train dev

# questions 90,447 7,405
# sentences 3,703,344 306,487

passages / question 9.95 9.95
sentences / passage 4.12 4.16
sentences / question 40.94 41.39
supporting sentences /
question 2.39 2.43

avg tokens (question) 17.92 15.83
avg tokens (sentence) 22.38 22.41

Table 1: Properties of the dataset.

5 Experiments

We regard the task as the problem of selecting
the supporting sentences from the passages to an-
swer the questions. Similar to the answer-selection
task in the QA literature, we report the model
performance using the mean average precision
(MAP) and mean reciprocal rank (MRR) metrics.
To evaluate the model performance, we use the
HotpotQA dataset, which is described in section
“Task and Dataset”. Table 1 shows properties of
the dataset. We conduct a series of experiments
to compare baseline methods with the newly pro-
posed models. All codes developed for this re-
search will be made available via a public web
repository along with the dataset.

5.1 Implementation Details
To implement the Propagate-selector (PS)
model, we first use a small version of ELMo (13.6
M parameters) that provides 256-dimensional
context embedding. This choice was based on
the available batch size (50 for our experiments)
when training the complete model on a single
GPU (GTX 1080 Ti). When we tried using the
original version of ELMo (93.6 M parameters,
1024-dimensional context embedding), we were
able to increase the batch size only up to 20,
which results in excessive training time (approxi-
mately 90 hours). For the sentence encoding, we
used a GRU (Chung et al., 2014) with a hidden
unit dimension of 200. The hidden unit weight
matrix of the GRU is initialized using orthogonal
weights (Saxe et al., 2013). Dropout is applied
for regularization purposes at a ratio of 0.7 for
the RNN (in equation 1) to 0.7 for the attention
weight matrix (in equation 2). For the nonlinear
activation function (in equation 2 and 3), we use
the tanh function.

Regarding the vocabulary, we replaced vocabu-

Model
dev train

MAP MRR MAP MRR

IWAN [1] 0.526 0.680 0.605 0.775
sCARNN [2] 0.534 0.698 0.620 0.792
CompAggr [3] 0.659 0.812 0.796 0.911
CompClip [4] 0.670 0.825 0.767 0.901
CompClip-LM [5] 0.696 0.841 0.748 0.873

PS-avg 0.566 0.708 0.889 0.959
PS-rnn 0.700 0.822 0.919 0.971
PS-rnn-elmo-s 0.716 0.841 0.813 0.916
PS-rnn-elmo 0.734 0.853 0.863 0.945

Table 2: Model performance on the HotpotQA dataset
(top scores marked in bold). Models [1-5] are
from (Shen et al., 2017a; Tran et al., 2018; Wang and
Jiang, 2016; Bian et al., 2017; Yoon et al., 2019), re-
spectively.

lary with fewer than 12 instances in terms of term-
frequency with “UNK” tokens. The final vocabu-
lary size was 138,156. We also applied the Adam
optimizer (Kingma and Ba, 2014), including gra-
dient clipping by norm at a threshold of 5.

5.2 Comparisons with Other Methods

Table 2 shows the model performances on the
HotpotQA dataset. Because the dataset only pro-
vides training (trainset) and validation (devset)
subsets, we report the model performances on
these datasets. While training the model, we im-
plement early termination based on the devset
performance and measure the best performance.
To compare the model performances, we choose
widely used answer-selection models such as
CompAggr (Wang and Jiang, 2016), IWAN (Shen
et al., 2017a), CompClip (Bian et al., 2017),
sCARNN (Tran et al., 2018), and CompClip-
LM (Yoon et al., 2019) which were primarily de-
veloped to rank candidate answers for a given
question. The CompClip-LM is based on Com-
pClip and adopts ELMo in its word-embedding
layer.

In addition to the main proposed model, PS-
rnn-elmo, we also investigate three model vari-
ants: PS-rnn-elmo-s uses a small version of
ELMo, PS-rnn uses GloVe (Pennington et al.,
2014) instead of ELMo as a word-embedding
layer, and PS-avg employs average pooling
(NQ= average(Q) and NS= average(S)) instead
of RNN encoding in equation (1).

As shown in Table 2, the proposed PS-rnn-
elmo shows a significant MAP performance im-



(a) hop-1 (b) hop-2 (c) hop-3 (d) hop-4

Figure 3: Attention weights between the question and sentences in the passages. As the number of hops increases,
the proposed model correctly classifies supporting sentences (ground-truth index 4 and 17).

# hop
dev train

MAP MRR MAP MRR

1 0.651 0.794 0.716 0.842
2 0.653 0.797 0.721 0.850
3 0.698 0.830 0.800 0.908
4 0.734 0.853 0.863 0.945
5 0.700 0.827 0.803 0.906
6 0.457 0.606 0.467 0.621

Table 3: Model performance (top scores marked in
bold) as the number of hop increases.

provement compared to the previous best model,
CompClip-LM (0.696 to 0.734 absolute).

5.3 Hop Analysis
Table 3 shows the model performance (PS-elmo)
as the number of hops increases. We find that the
model achieves the best performance in the 4-hop
case but starts to degrade when the number of
hops exceeds 4. We assume that the model ex-
periences the vanishing gradient problem under a
larger number of iterative propagations (hops). Ta-
ble 4 shows model performance with small version
of ELMo.

Figure 3 depicts the attention weight between
the question node and each sentence node (hop-4
model case). As the hop number increases, we ob-
serve that the model properly identifies support-
ing sentences (in this example, sentence #4 and
#17). This behavior demonstrates that our pro-
posed model correctly learns how to propagate the
necessary information among the sentence nodes
via the iterative process.

6 Conclusion

In this paper, we propose a graph neural network
that finds the sentences crucial for answering a
question. The experiments demonstrate that the
model correctly classifies supporting sentences by
iteratively propagating the necessary information

# hop
dev train

MAP MRR MAP MRR

1 0.648 0.790 0.708 0.842
2 0.655 0.801 0.720 0.853
3 0.681 0.816 0.768 0.886
4 0.706 0.834 0.796 0.906
5 0.716 0.841 0.813 0.916
6 0.441 0.596 0.452 0.600
7 0.434 0.589 0.450 0.606

Table 4: Model performance with small version of
ELMo (top scores marked in bold) as the number of
hop increases.

through its novel architecture. We believe that our
approach will play an important role in building
a QA pipeline in combination with other MRQA
models trained in an end-to-end manner.
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